Some Rigidity Theorems for Finsler Manifolds of Sectional Flag Curvature
نویسندگان
چکیده
In this paper we study some rigidity properties for Finsler manifolds of sectional flag curvature. We prove that any Landsberg manifold of non-zero sectional flag curvature and any closed Finsler manifold of negative sectional flag curvature must be Riemannian.
منابع مشابه
Finsler Manifolds with Nonpositive Flag Curvature and Constant S-curvature
The flag curvature is a natural extension of the sectional curvature in Riemannian geometry, and the S-curvature is a non-Riemannian quantity which vanishes for Riemannian metrics. There are (incomplete) nonRiemannian Finsler metrics on an open subset in Rn with negative flag curvature and constant S-curvature. In this paper, we are going to show a global rigidity theorem that every Finsler met...
متن کاملRelative volume comparison theorems in Finsler geometry and their applications
We establish some relative volume comparison theorems for extremal volume forms of Finsler manifolds under suitable curvature bounds. As their applications, we obtain some results on curvature and topology of Finsler manifolds. Our results remove the usual assumption on S-curvature that is needed in the literature.
متن کاملOn Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملOn Negatively Curved Finsler Manifolds of Scalar Curvature
In this paper, we prove a global rigidity theorem for negatively curved Finsler metrics on a compact manifold of dimension n ≥ 3. We show that for such a Finsler manifold, if the flag curvature is a scalar function on the tangent bundle, then the Finsler metric is of Randers type. We also study the case when the Finsler metric is locally projectively flat.
متن کاملOn the k-nullity foliations in Finsler geometry
Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...
متن کامل